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Abstract: The problem of enumerating and generating valence structures for molecules containing both two-center 
and three-center bonds is discussed. Two formal solutions in terms of an integer programming problem and a 
polynomial representation are suggested. A construction algorithm and a chemically suggestive variant of it are 
developed and discussed. 

I n electron-deficient molecules, particularly in boron 
hydrides and carboranes, topological methods which 

utilize the three-center bond concept2 have given useful 
descriptions of both structure3-4 and reactivity.5 An 
important element of such methods is the enumeration 
and/or generation of all allowed three-center valence 
structures for a given configuration of atomic nuclei. 

The problem of counting Kekule structures in con­
jugated hydrocarbons was considered by Cvetkovic, 
Gutman, and Trinajstic,6 who obtained an expression 
for the number of such structures as the permanent of 
an adjacency matrix. Hosoya7 has given a polynomial 
representation for the numbers of Kekule and Dewar 
structures of even alternant hydrocarbons. 

The problem which we consider here8 is: can we ob­
tain analogous, relatively simple procedures for enu­
merating valence structures for boron hydrides, in 
which there are three-center as well as two-center 
bonds? A computer program for the enumeration of 
such structures has been developed by Epstein.4 How­
ever, the approach employed was both enumerative 
and exhaustive, in that all possible combinations of two-
and three-center bonds must be generated and evalu­
ated. We seek here approaches that are more efficient 
timewise and hence render isomer enumeration practi­
cable and convenient for quite large molecules even with­
out the aid of a computer. 

In the next section we describe the three-center va­
lence structure enumeration problem. We then obtain 
results of two kinds. First we exhibit two alternative 
formal representations of the enumeration problem as 
a covering problem. Then we describe a constructive 
algorithm for performing the enumeration that renders 
the problem accessible to hand computation even for 
molecules as large as Bi6H2O, for which the computer 
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program required 2.5 hr of time on the IBM 360/65 in 
order to select the 218 acceptable structures from over 
2.5 million possibilities.9 An example of the use of the 
algorithm is given. Finally, another representation of 
the problem, for which an analogous algorithm may be 
deduced, is suggested and some properties of possible 
chemical significance are pointed out. 

I. The Boron Hydride Structure Problem 

A given boron hydride molecule may be described by 
a graph,10 the atomic configuration graph (ACG), 
whose vertices represent boron nuclei and each of 
whose arcs or edges connects a pair of nuclei that may 
participate in a common bond. Examples of some 
ACG's are given in Figure 1. The complexity of the 
situation arises from the fact that there are four types 
of bonds, only two of which are uniquely determined by 
the arrangement of the nuclei. The four kinds of 
bonds follow. 

1. Boron-hydrogen (B-H terminal) bonds. Most 
boron atoms are bound to a single terminal hydrogen, 
though some are bound to zero or two. These bonds 
are considered to be determined by the given atomic 
positions. 

2. Boron-hydrogen-boron (B-H-B bridge) bonds. 
These bonds are also determined by the given molecular 
structure or ACG. They are represented by arcs 
(curved lines) in the ACG's and valence structure 
graphs. 

3. Boron-boron (B-B two-center) bonds. Such 
bonds may join any pair of vertices (boron atoms) 
that are connected by an edge (straight line) in the 
ACG. 

4. Boron-boron-boron (B-B-B central three-cen­
ter11) bonds. These bonds may join any three vertices 
that are connected by three arcs or edges in the ACG. 
Such a set of three vertices will be referred to as a tri­
angle. 

A valence structure for a boron hydride consists of a 

(9) W. N. Lipscomb, Pure Appl. Chem., 29, 493 (1972). 
(10) Strictly speaking, one is dealing with a hypergraph, rather than 

a graph in the usual sense, since there are two distinct binary relations 
among the borons: direct bonding and bonding through a bridge 
hydrogen. 

(U) In this discussion, we shall omit consideration of the open three-
center B-B-B bond which joins sets of three vertices connected by two 
edges in the ACG. Such bonds appear to be necessary to describe 
carborane valence structures (I. R. Epstein, D. S. Marynick, and W. N. 
Lipscomb, J. Amer. Chem. Soc, 95, 1760 (1973)) but do not appear to 
play a significant role in the boron hydrides. 
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set of two-center and three-center bonds, or alternatively 
of edges and triangles, together with the given B-H 
terminal and B-H-B bridge bonds. An allowed va­
lence structure must satisfy the following "conservation 
conditions." 

1. Each edge in the ACG must be associated with a 
two-center or three-center bond. It may be associated 
with more than one three-center bond, but not with 
both a two-center and a three-center bond12 (conserva­
tion of topology). 

2. Each boron vertex must take part in a total of 
four bonds of all four kinds (conservation of orbitals or 
valency). 

3. The number of framework (B-B or B-B-B) 
bonds of each type is determined by the number of elec­
trons in the molecule or ion (conservation of electrons or 
charge). In the styx notation of Lipscomb,13 the 
boron hydride BpHj,+8+c with charge c, s B-H-B bonds, 
and x BH2 groups must possess precisely t = p + c — s 
B-B-B and y = s - 2c - q/2 B-B bonds. 

To summarize, then, an allowed valence structure 
for a given boron hydride consists of a set of t triangles 
and y edges which cover each of the edges of the ACG 
at least once and such that (a) no edge is covered by 
both a triangle and an edge and (b) each vertex v, is 
covered 4 — Xj times, where X1 is the number of B-H 
and B-H-B bonds associated with V3-. Typically, 
most of the framework bonds will be of the three-center 
type. 

II. Alternative Formulations 

There are a number of ways to formulate the problem 
described in the previous section. In the following sec­
tion, we shall show that there exists an approach that is 
sufficiently suited to the nature of the problem's con­
straints as to render computation relatively easy. We 
begin here with two alternative descriptions of the 
problem which lead to feasible, if not necessarily opti­
mal, methods of attack. 

First, we note that the problem may be formulated 
as an integer program.14 Let us denote the vertices of 
the ACG by v* (1 < i < p), the edges by at], and the 
allowed triangles by tw where the subscripts on the a's 
and the t's refer to the vertices involved in the edge or 
triangle considered. 

With each edge a y or each triangle Xijk we associate a 
variable ytj or ym, respectively. For all vt, aw, and 
tijk in the ACG we demand that the variables satisfy 
the following constraints. 

0 < yv < 1 

0 < ym < 1 

yn = }'n (yu is symmetric) 

yak = yjH — yiij = yim — ym — ym 

(jm is unchanged by cyclic permutation of its indices) 

yu + Hywc > 1 
A-

yu + ym < 1 
(12) In some molecules, particularly carboranes (see ref 11), one may 

wish to relax this last restriction and consider so-called 'V-donation" 
structures. 

(13) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New 
York, N. Y., 1963, p 45. 

(14) H. Greenberg, "Integer Programming," Academic Press, New 
York, N. Y., 1971. 

B 5 H
9 B 6 H 6 - * 

(or C2B4H6) 

Figure 1. Some atomic configuration graphs for boron hydrides. 
v„ represents a boron with a single B-H bond, v„ a boron with 
no B-H bonds, and v„- a boron with two B-H bonds. B-H-B 
bridges are denoted by arcs v„v„. 

ZOw + E ym) = 4 - Xt 
i k>j 

E y» = s - 2c - qjl 

YJ ym = P + c - s 
i<j<k 

The number of lattice points (sets of integral values for 
the {yu} and {yijk}) which satisfy all the constraints is 
the desired answer, the number of allowed valence struc­
tures. We may interpret a4/s or tijk's whose variables 
take the value 1 at a particular lattice point as being 
those bonds present in the corresponding valence struc­
ture. 

Since all the above constraints are linear, the problem 
is a kind of integer program. In the usual integer pro­
gramming problem, one has an objective function, also 
linear in the j ' s that one seeks to maximize. In the 
present problem, one can obtain solutions (lattice 
points) by introducing an arbitrary objective function, 
solving the optimization problem for that function, 
introducing a further constraint to eliminate the solu­
tion just found, and iterating the procedure.15 

There has been considerable progress in recent years 
in the development of general integer programming 
methods,14 and the problem considered here is within 
the range that can be solved with reasonable speed on 
modern computers. In general, one might expect to be 
able to find all solutions (valence structures) more 
easily by such methods than by exhaustive enumeration. 

(15) Of course, care must be taken to ensure that the new constraint 
introduced eliminates only the solution just found and no others. In 
practice this poses no difficulty. 
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However, the most efficient ways to solve integer pro­
gramming problems are those that make maximal use 
of the inherent structure of the problem. In other 
words, any use we can make of chemical intuition 
should make the general approach outlined above (or 
even an enumerative approach) far more effective. 

A second method of attack is to seek a mathematical 
formula for the number of valence structures of a given 
ACG. Although the practicality of such an approach 
is questionable, we indicate here, for the sake of com­
pleteness, how such a formula may be derived. 

We first define variables Z4 for each v4 and Z 0 for 
each edge or arc aw. We also define a polynomial F 
({Zi} {Z0}, <pi, <pi) by the expression 

F = 1 1 ( 1 + PiZ1Z^ZtZyZ4JtZjJt)H(I + VzZiZjZij) 
i<j<k i<] 

Each monomial term in F corresponds to a particular 
choice of edges and triangles. Those of interest here are 
terms having degree p + c — 5 in cpi and s — 2c — qjl 
in (p2, degree 4 — X1 in each Z3, and degree at least 1 
in each Z43. These coefficients may be extracted by 
performing suitable integrals over F, which can be 
made to give rise to an explicit formula for the number 
of valence structures in question. 

IH. The Construction Algorithm 

The method described in this section represents an 
attempt at systematizing the intuitive "trial and 
error" approach of boron chemists who have been 
constructing three-center valence structures for many 
years. It may be termed a systematic branching proce­
dure for the generation of valence structures, in the 
sense that the set of all such structures may be branched 
or divided into a subset of structures possessing a partic­
ular edge or triangle and a complementary subset in 
which the edge or triangle is absent. Within a branch, 
i.e., among solutions in either of the two subsets defined 
by the particular branching, it is often possible to re­
duce the problem in size and/or to deduce the presence 
or absence of other edges or triangles in the solutions 
which belong to that branch. 

By a systematic branching procedure we mean a se­
quence of branchings and reducing steps that 
ultimately lead to all possible solutions. To be 
systematic the procedure should contain both in­
dications as to which edge or triangle one is to branch 
on at any stage and also a simple, well-defined reduc­
tion procedure that may be applied on each branch. 

Such a procedure is efficient if it leads to dead end 
branches only rarely. In that case most branches will 
actually yield solutions, so that the number of reduc­
tions required to enumerate the N solutions will be of 
the order of N times the number of reductions necessary 
to define a solution. Since this number is generally of 
the order of p (the number of boron atoms) and since 
each reduction requires at most on the order of p steps, 
one can perform the enumeration (if the procedure is 
efficient) in on the order of p2N steps, as opposed to a 
number of steps exponential in p required by the com­
plete enumeration of configurations followed by elimina­
tion of those violating constraints.16 We find consider-

(16) Although the computer program described in ref 4 makes con­
siderable use of the structure of the problem and hence quickly elimi­
nates many configurations, it is still an enumerative approach and its 
time requirements do appear to be exponential in p. 

ably better performance in practice than the estimate of 
P2N above. 

Our systematic procedure may be described as fol­
lows. 1. Draw the ACG for the molecule. For con­
venience, choose an edge ay which is a member of one 
and only one triangle tm. Such edges will be referred 
to as external edges. Branch on this edge; that is, 
divide the solutions into those which contain a4;- and 
those which do not. The latter branch must therefore 
contain tm. If there are no external edges choose an 
edge at random and branch into those structures which 
contain the edge and those which do not. 

2. Structures containing an external edge aw may be 
viewed as solutions to a reduced problem in which the 
edge a y is omitted and the degrees of vertices v4 and \s 

are reduced by one. (Initially their "degrees" are 4 — 
Xi and 4 — X1-.) Solutions containing a triangle tijk, 
where the edge atf is external, may be considered as 
solutions to a reduced problem in which the edge a{] is 
omitted, the edges a» and a.jk are converted to B-H-B 
arcs, and the degrees of V4, v,, and \k are each reduced 
by 1. If a branch contains only structures lacking a tri­
angle incident to a particular B-H-B bond, then that 
bond may be suppressed. When the degree of a vertex 
has been reduced to zero, that vertex and all edges or 
arcs associated with it are removed from the graph. 

3. (a) If any vertex of a (reduced) graph has degree 
less than half the number of edges emanating from it, 
then the branch contains no solutions, since it will be 
impossible to cover all the edges. 

(b) If in a (reduced) graph a vertex has degree one or 
two and has incident to it only one triangle and two 
edges, then one can reduce the graph further by observ­
ing that either the triangle (if the degree is one) or both 
edges (if the degree is two) must be in all associated 
solutions and applying the reduction procedures of step 
2 to these elements. 

As will be seen in the examples, the use of molecular 
and local symmetry can greatly increase the efficiency of 
these procedures. Also, the use of systematic reduc­
tion techniques suggests the utility of having precom­
piled sets of solutions for relatively small, frequently 
occurring subunits (reduced graphs). 

As a first example we consider the B10Hi3
- ion. The 

procedure is illustrated in Figure 2. By the conserva­
tion of electrons, all solutions must contain three B-B 
and six B-B-B bonds. We start, according to rule 1, 
at the external edge a78 and obtain, by rule 2, the re­
duced graphs corresponding to the a78 and t378 branches. 
In the a78 branch, rule 3b applied at vertices 7 and 8 re­
quires the presence of t348 and t237, which in turn pro­
hibits inclusion of t489 and t367, permitting a further re­
duction of the graph by elimination of v7 and vs. Rule 
3b applied at v9 now requires a49 and a9io- Since all 
three B-B bonds have now been accounted for, a4]<i 
must be covered by ti.no and a6io by ti3i0. The resulting 
reduced graph requires t256 and tm to cover the remain­
ing edges ai2, an, a25, and a26, thus completing the struc­
ture, the unique allowed structure containing the edge 
a78. Analysis of the t378 branch proceeds similarly, as 
shown in Figure 2. We ultimately obtain a total of 16 
solutions. Note in particular that symmetric reduced 
graphs yield a multiplicity of solutions which depends 
upon the symmetry of the graph. Thus, even in a 
species with no molecular symmetry, use may be made 
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2 * (=25i'267) 
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Figure 2. Branching procedure for Bi0Hi3 (see text). All boron atoms are attached to a single terminal hydrogen. Numbers follow­
ing the vertex numbers are degrees of the vertices. Dead end branches are marked by an X. 

of local symmetry. Obviously, the existence of molec­
ular symmetry simplifies the problem further. 

IV. The Derived Graph 

As a variant of the construction algorithm discussed 
above, we indicate here how the problem may be ap­
proached by utilizing another graph, which is related 
to the ACG, which we shall designate as the derived 
graph of the molecule. Consider the graph derived 
from the ACG by taking as vertices the edges of the 
ACG and joining two vertices by an edge if and only if 
the corresponding edges in the ACG belong to a com­
mon triangle. A simple construction of the derived 
graph is obtained from the ACG by placing dots (ver­
tices) at the midpoints of all edges, connecting all pairs 
of points found in a common triangle, and erasing the 
original ACG.17 Figure 3 contains the derived graphs 
for the molecules whose ACG's are given in Figure 1. 

It is clear that, since permutations which interchange 

(17) A sheet of tracing paper is an enormous aid to this construction. 

symmetry equivalent vertices of the ACG must also 
take edges and arcs into their symmetry equivalents, 
the derived graph must have symmetry equal to or 
greater than the ACG. Also, triangles in the ACG 
correspond to triangles, edges, or vertices in the derived 
graph according to whether the triangle contained 
three, two, or one edge, respectively, in the ACG. A 
solution to the problem in terms of the derived graph is 
simply a set of vertices and triangles which conform to 
the conservation constraints discussed in section I. An 
algorithm analogous to that of the previous section may 
easily be derived for choosing vertices and triangles 
from the derived graph. 

Some classes of problems become considerably easier 
to solve in the derived graph representation. In partic­
ular, when the number of edges in the ACG is compara­
ble to or smaller than the number of boron atoms, the 
derived graph is generally simpler to work with. As 
an extreme example, the derived graph for B4Hi0 con­
sists of a single isolated vertex. Perhaps a more im-
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Figure 3. Derived graphs corresponding to the boron hydrides of 
Figure 1. Edges and triangles are labeled according to the vertex 
numbering scheme of the ACG's in Figure 1. 

portant class of problems, particularly for the larger 
boron hydrides, is that in which the set of solutions 
may be factored into two parts, i.e., those problems in 
which the molecule consists of two pseudoindependent 
subunits. Although this factorization may often be 
obtained from direct consideration of the ACG, it is 
generally more apparent in the derived graph. Two ex­
amples of this phenomenon appear in the derived 
graphs of B10H16 and B16H20 in Figure 3. In the former 
case, the fact that all valence structures may be ex­
pressed as products of two B6H9 structures plus a16 is 
immediately apparent from the existence of the three 
disjoint subgraphs. The "bottleneck" at a56 in the 
B16H2O derived graph allows it to be separated into a 
B8 subunit whose derived graph is isomorphic to that 
of B8Hi2 or a related ion (e.g., B8H13

-") and a B10 subunit 
isomorphic to Bi0Hu or B]0H13

-, Figure 2. This sep­
aration made it possible for a student to obtain by hand 
the 218 valence structures for B16H20 in less time than 
required by the computer program.49 

Finally, we note that (except in the rare instances such 
as Bi0H16 when the derived graph is disjoint) a boron 
atom (ACG vertex) is represented in the derived graph 
by a set of connected vertices (the atomic set), each of 
which contains that atom in the ACG. It is interesting 

to divide the boron atoms in a molecule into two cate­
gories, according to the topology of their atomic sets in 
the derived graph. Those whose atomic sets are closed 
polygons will be called internal, while those whose 
atomic sets are line segments will be called external. 
It appears that boron atoms at internal positions tend 
to be more negatively charged and that the most stable 
carboranes are those with the carbons at external posi­
tions where possible. If one divides boron hydrides ac­
cording to closo (e.g., B6H6

2-), nido (e.g., B5H9), ar-
achno (e.g., B5Hn) classification,18 one finds that closo-
boranes contain only internal boron atoms. Since 
there are many more ways of covering internal atomic 
sets than external ones, this observation provides a 
rationalization, in terms of an increased number of val­
ence structures, for the observed stability of the closo-
boranes and -carboranes.19 The m'efo-boranes have 
both internal and external borons, though generally 
more of the latter, while the smaller arac/wo-boranes 
have even fewer internal atoms, with those containing 
fewer than seven borons having only external positions. 
Interestingly, for the larger boranes (ten or more bo­
rons) the numbers of internal positions become compa­
rable for nido and arachno species containing the same 
numbers of borons. We suggest that the distinction 
between internal and external positions may prove a 
useful one in understanding and predicting the struc­
ture and reactivity of the boranes and carboranes. 

V. Conclusion 
We have shown that a number of alternative, but 

ultimately equivalent, methods may be used to solve the 
problem of generating and/or enumerating three-center 
valence structures. The most efficient methods will be 
those which make maximal use of chemical intuition 
as opposed to mathematical "brute force." While the 
discussion here has dealt only with a particular type of 
three-center valence structure, we have attempted to 
keep the treatment sufficiently general that extensions 
to other problems may be easily accomplished. For 
example, inclusion of open three-center bonding11 and/ 
or ^-donation structures12 is easily allowed for by 
alteration of the "topology conservation" rules of sec­
tion I. Consideration of the four- and higher-center 
bonding which may be present in some intermetallic 
and other compounds is somewhat more complicated 
but certainly within the scope of the methods presented 
here. 
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that closed triangulated polyhedra offer particular stability is also 
supported by this notion. Note that the external-internal distinction 
is possible (but far less obvious) without the derived graph representa­
tion. 
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